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INVERSE CASCADE IN FRACTAL TURBULENCE (VORTEX-FRACTONS) 

A. G. Bershadskii* UDC 532.517.4 

A direct connection between the properties of the inverse cascade of energy 
and the fractal properties of turbulence is established. 

Introduction. The transport of energy from small-scale to large-scale motions attrac- 
ted attention long ago. A large body of literature is devoted to this topic (see, for exam- 
ple, [1-6]), and it can be asserted that its existence has been reliably established by 
experiment. It is considered that the inverse cascade is a characteristic feature of large- 
scale processes in quasi-two-dimensional turbulence. However, the physical nature of the 
inverse energy cascade is still not well understood, and there is a great deal of experiment- 
al material, obviously connected with the inverse cascade, which needs interpretation. Evi- 
dently, one of the fundamental points that is unclear here is the connection between the 
inverse cascade and the fractal character of turbulence. The difficulty in the theoretical 
analysis of this problem is due to the specific fractal structure in two-dimensional turbu- 
lence (for example, see [5, 7]). Below it will be shown that with the suppression of the 
fractal character of the motion, the inverse energy cascade in two-dimensional turbulence 
is also suppressed at large scales. That is to say, the very existence of the cascade turns 
out to be caused by the fractal character of the turbulence. 

The carriers of the inverse cascade are the large-scale, localized fractal formations, 
closely linked to the fracton dimension of the fractal processes [8]. Evidently, the char- 
acteristic quasi-horizontal vortices with structures on the scale of -i-i00 km, which have 
been observed in the ocean [9], are such vortex-fractons (see below). In magnetohydrodyna- 
mic turbulence, it is still not possible to visualize vortex-fractons. However, the spec- 
tral and integrated characteristics of the processes, for which these vortices are respon- 
sible, have been measured in numerous experiments. Below, a comparison with these data 
will be made. This comparison indicates that for both the oceanic turbulence and the MHD 
turbulence, the inverse energy transfer to large scales is linked to processes of a fracton 
nature. A connection is established between the fracton dimension of the turbulence Df [8] 
in the two-dimensional case and the low-frequency scaling spectrum of the kinetic energy 
of pulsation 

E (~) --~ ~~ -a. ( 1 ) 

For the universal (approximate) value Df = 4/3 [8] (Alexander-Orbach), relation (i) gives 

E(o) ,--., o-~/s,  (2 )  
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that is, the well-known spectral law of the Kolmogorov type (see, for example, [1-6]). 
suppression of the fractal character, Df + 2 (in the two-dimensional case), and from (i) 
we have 

E (~o) ~ ~o-~. 

In this case, the inverse transfer of energy is also suppressed. 

The action of both laws (2) and (3) is observed in numerical and natural experiments 
in the appropriate conditions. 

One can also examine the damping of the total pulsating energy field of the velocity 
in time, u2(t) in those cases, when it is determined primarily by the low-frequency range. 
For Df = 4/3, we obtain 

With 

( 3 )  

"" t - 2 / 3 ,  (4) 

and for the case of suppressed inverse cascade (Df + 2) 

u2~ t-1. (5) 

Laws (4) and (5) are also observed in the MHD experiments of various authors. 

If indeed we still make use of the Kolmogorov hypothesis [i, 2] 

(' du~ i2/a E(~) ~ k ~ / ~-5/3, (6) 

t h e n  f o r  t h e  u n i v e r s a l  (Df = 4 / 3 )  c a s e ,  we o b t a i n  f rom ( 4 ) :  

E (~) N t -10 /9~-5 /3 .  ( 7 )  

A law o f  such  form i s  s a t i s f i e d  ( b o t h  in  t and in  w) in  w e l l - k n o w n  MHD e x p e r i m e n t s  
[10] f o r  l o w - f r e q u e n c y  ( l a r g e - s c a l e )  p u l s a t i o n s  o f  t h e  v e l o c i t y  f i e l d .  

On t h e  who le ,  i t  can  be s a i d  t h a t  v o r t e x - f r a c t o n s  e v i d e n t l y  d e t e r m i n e  t h e  l o c a l ,  as  
w e l l  as  t h e  i n t e g r a l  dynamics  o f  q u a s i - t w o - d i m e n s i o n a l ,  l a r g e - s c a l e  t u r b u l e n t  p r o c e s s e s  
c a u s i n g  t h e  i n v e r s e  e n e r g y  c a s c a d e ,  and i t s  s u p p r e s s i o n  e n s u r e s  an e q u i l i b r i u m  s i t u a t i o n .  

1. The p r o b a b i l i t y  d e n s i t y  o f  f i n d i n g  a p a r t i c l e  l o c a t e d  i n  a t u r b u l e n t  medium, p ( r ,  t )  
i s  d e s c r i b e d  by t h e  e q u a t i o n  

Op/Ot = div X V p - - u v p  , (8) 
where X is the diffusion coefficient, and u(r, t) is the pulsating velocity field. The 
first term on the right-hand side of (8) describes diffusion, and the second, convection 
in the velocity field. If the velocity field is stochastic (turbulent motion), then the 
solution to (8) will also be stochastic. The vorticity of the velocity field ~ = rot u is 
highly nonuniform in turbulent motion. Its properties are readily described with the help 
of fractal methods [6, 8, 9, ii]. The geometric structure of the vorticity field is charac- 
terized by a series of universal parameters. These parameters are of the type: the fractal 
dimension D, the fracton (spectral) dimension Df = 2D/Dw, where D w is the dimension of the 
internal wander within the fractal [8]. According to traditional interpretation, the region 
occupied by a fluid with significant vorticity, is precisely the region of turbulence. The 
remaining parts of the fluid are considered to be laminar, so that the fractal character- 
istics of the vorticity field are, in essence, the fractal characteristics of the turbulence. 

A particle located in the fluid and described by Eq. (8), wanders through the fractal 
vorticity field without leaving it [12]. The fractal dimension of the internal wander is 
D w. The low-frequency characteristics of these random walks have a number of universal 
properties. The dimension D r of the set of moments in time, at which the particle returns 
to its initial point is [8]: 

Dr = 1 - -  Dfl2. 

As a result, the time differential in the fractal regime is (for sufficiently large t) 

( 9 )  

(dt)j .~ t-D~dt. (10 )  
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Characteristic behavior of the low-frequency spec- 
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trum in turbulent MHD flows. 

Fig. 2. Spectral density of the kinetic energy of the hori- 
zontal velocity components of intermediate-scale oceanic flows. 

If we switch to the dual of t, the frequency variable ~, then 

(d~)s ~ ~-Drd~ (ii) 

(now for sufficiently small w), that is, the probability density of encountering the frequency 
range [~, m + de] in this process is 

P (~) ~ e - ~  ( 1 2 )  

From t h i s  [and from ( 9 ) ] ,  t h e  s p e c t r a l  d e n s i t y  of  the  random p r o c e s s  p ( t )  f o r  smal l  m i s  

In two-d imens iona l  t u r b u l e n c e ,  t h e r e  i s  on ly  one component of  t he  v e c t o r  v o r t i c i t y  
= r o t  u,i which i s  normal  t o  t h e  p l ane  of  t he  mot ion .  I t  i s  we l l  known t h a t  t h i s  component 

s a t i s f i e s  ( 8 ) ,  as does p ( r ,  t )  [ 1 - 3 ] .  Thus, i t  can be assumed t h a t  f o r  s u f f i c i e n t l y  l a r g e  
t ( sma l l  m), t h e  s p e c t r a l  c h a r a c t e r i s t i c s  of  p ( r ,  t )  and ~ ( r ,  t )  w i l l  c o i n c i d e .  That  i s  

Sa (~) ,-, ~Df-s. (14) 

On the other hand, it is known that the spectral density of the pulsating energy rate Su(m) 
is related to S~(m): 

S~ (~) ,.~ ~-2S~ (~). (15) 

Then from (14) and (15) we obtain 

S u(~)N Dr-3. (16) 

2. The spectral (fracton) dimension Df, generally speaking, depends on the fractal 
type and the topological dimension of the space in which the fractal is embedded. However, 
in the majority of cases, it does not differ greatly from 4/3 (the Alexander-Orbach hypoth- 
esis [8]). Upon substituting such a universal value for Df in (16), we obtain a spectrum 
for the velocity field of the Kolmogorov form S u - ~-5/s. Experiments on two-dimensional 
turbulence (numerical and natural [2]) obtained low-frequency portions of the spectrum with 
such a dependence. Natural MHD experiments and observations of oceanic turbulence are of 
the greatest interest for confirmation of the proposed connection. Among the MHD experi- 
ments, [i0, 13] can be singled out, in which turbulence was generated in mercury with the 
help of hydrodynamic grids. In this case, a strong uniform magnetic field was imposed on 
the motion (the turbulence was generated in the field). In the low-frequency region (to 
the left of the generating frequency), a spectrum close to (2) was observed. For illustra- 
tion, Fig. 1 shows such a spectrum, taken from [13]. The damping law for the pulsation 
energy in time was also observed in these experiments (on these laws, see below). 
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Energy spectrum of quasi-two-dimensional MHD flows. 

The damping of pulsation energy with time. 

Since the probability density of finding the frequency in the interval [~, ~ + dm], 
in the range of m is considered here, and is given by (12), then for Df = 4/3, it has the form 
[see also (9)] 

p (~) ,-., ~-1/3. ( 17 )  

Thus, in this range, p(~) grows with decreasing ~. As a consequence, the pulsation 
energy here will be transferred from high frequencies to low, to the side of the most prob- 
able frequencies (as in all systems with different probabilities of realizing different 
states). 

Figure 2, taken from [9], shows the spectral density of the kinetic energy of horizon- 
tal velocity components, measured in the ocean. A straight line of slope -5/3 has been 
drawn to show the behavior of the spectrum in the low-frequency region. In these observa- 
tions, it was also noted that the energy of macropulsations goes into increasing the energy 
of the mean motion, that is to say, there is an inverse energy cascade. Characteristic 
turbulent vortices (fractons) of dimension -i-i00 km were also noted in the study. With 
suppression of the fractal character in two-dimensional turbulence, D + 2 and D w + 2. Con- 
sequently, in this case, Df = 2D/D w + 2. From (9) and (12) we then conclude that when the 
fractal character is suppressed, D r ~ 0 and p(~) + const. 

Thus, when the fractal character is suppressed, the transfer of energy to the low- 
frequency range, due to the different probabilities of frequency realization, is decreased. 
From this, it can be concluded that it is precisely this fractal character of the turbulence 
which causes the inverse transfer of energy in the low-frequency range for two-dimensional 
turbulence. The energy spectrum also changes when the fractal character is suppressed. 
Since Df + 2, then from (16) we obtain S u - ~-l. Such equilibrium spectra were obtained 
in numerical experiments on two-dimensional turbulence (see, for example, review [2]). We 
note here the experiment described in [14], in which developed turbulence was placed in 
a strong magnetic field. (This distinguishes the experiment from the previously mentioned 
experiments, in which the turbulence was generated in the magnetic field.) During such con- 
tainment, the three-dimensional fractal structure, characterized by steep velocity-field 
gradients, is suppressed by the strong interaction with the external magnetic field (and 
not built up under the field, as in the case of generation of turbulence in the magnetic 
field). Figure 3, taken from [14], shows experimental data obtained in such circumstances 
for the energy spectrum (k - m). The straight line is drawn in to mark the adherence to 
law (3). 

3. We now examine damping in time of the integral characteristics of turbulence. 

The diffusion in a turbulent fractal of a smooth envelope of the function P(r, t), 
which we denote by P(r, t), is described by the equation [8] 

1 c9 xrD_1_O OP ( 18 )  
OPlOt r D - l  ar Or ' 
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where @ = D w - 2. For large t, the asymptotic solution to this equation has the form [8] 

P(r, t) ~. t--D/Dw. (19) 

By using the analogy between p(r, t) and ~(r, t) used earlier, we obtain 

Q~ (t) ,.~ t - 2 ~  ( 20 ) 

that is, once again by the spectral (fraction) dimension is meant Df = 2D/D w. In order 
to change over to the pulsation energy u 2, we can make use of (2) 

d~/dt  = --2v~F. (21 ) 

However, when referring to the fractal regime, this relation must be used in the form 

d~ =--2~-~(dt)1, 
and [see (i0)] 

du~ =--2w~.~t-~ 

Fina l ly ,  using (9) and (20),  we obtain 

U 2 ~ t - -Dr~ 2. 

If the universal value Df = 4/3 is used, then from (24) we have 

(22) 

(23) 

(24) 

~ N t  -2/a. (25) 

Recollect that the value Df = 4/3 corresponds to the low-frequency range of the spectrum 
Su _ ~-s/3 (see Sec. 2). 

A damping law of the form (25) is indeed found in experiments [4]. 

We should note that in the MHD experiments, in which a spectrum of the form (2) is 
observed in the low-frequency range, this spectrum does not necessarily determine the damp- 
ing of the entire integrated energy of pulsation. However, in the case where the considered 
change in time is in just this frequency range, the spectrum dynamics is governed by this 
law. Using the Kolmogorov hypothesis (6) (for Df = 4/3), we obtain (7) from (25). In the 
previously cited experimental work [i0], where observations of a spectrum of the form (2) 
were described, data on the behavior of S u with time were also given. These data are shown 
in Fig. 4. For comparison with (7), the straight line depicting the dependence S u - t -I~ 
has been drawn in Fig. 4 (x/M ~ t in this figure). 

For the degenerate case, with suppressed fractal character (when Df + 2), we obtain 
from (24) 

I thank H. Branover, who kindly sent reprints of [14] and other experimental material 
with detailed explanations. 
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KINETICS OF HEAT TRANSFER TO A SPHERICAL PARTICLE 

FROM A RAREFIED PLASMA. 

3. MAXWELLIAN ION APPROXIMATION 

A. G. Gnedovets, A. V. Gusarov, and A. A. Uglov UDC 533.9 

The authors describe the kinetics of heat transfer to a spherical particle 
from a rarefied plasma with a Maxwellian velocity distribution of molecules, 
electrons, and ions. 

A material particle in a rarefied plasma experiences collisions with molecules, elec- 
trons, and ions, resulting in transfer of energy and charge. Plasma electrons recombine 
on the surface and are absorbed by the particle, and the ions are neutralized by electrons 
of the material and scattered by the particle surface in the same manner as are incident 
molecules of the plasma gas. It is important that due to the large difference in the thermal 
velocities of electrons and plasma ions the particle acquires a negative potential ~f < 0 
for which the electron and ion charge flux compensate each other, Je-(~f) = Ji-(~f)" During 
collisions of electrons and ions with the surface, besides kinetic energy the particle re- 
ceives energy of the charged states corresponding to the work function r and the effective 
ionization energy li-~ e. 

Computations of heat transfer between the particle and the plasma reduce to determining 
the number flux of plasma particles J~+ of each type and the kinetic energy Ej -+ transferred 
by them, from simultaneous solution o~ the kinetic Boltzmann--Vlasov equation for the velocity 
distribution function fj and the Poisson equation for the potential ~(r). The main complica- 
tions in solving the kinetic problem are linked to describing the motion of ions in the 
attractive field of a charged particle. This arises from the use of simplified distribution 
models, e.g., the cold ion [i] and the monoenergetic ion [2] approximations, used to describe 
heat transfer to a particle in [3, 4]. Therefore, it is of interest to analyze beat transfer 
to a spherical particle from a collisionless plasma at rest (s >> R) in the more realistic 
case when the ions, as well as the molecules and electrons, are subject to a Maxwellian 
velocity distribution in the unperturbed plasma region far from the particle: 

2~kT:~ ) exp . ( 1 )  
,. 2kT:~ 

For a diffuse law of scattering of molecules and neutralized ions by the particle sur- 
face in conditions when thermal-emission processes are not important, the relations for 
the heat flux qj = Qj/Ej ~ for each type of plasma particle in dimensionless form are as 
follows: 

q~ = I--%, ( 2 )  

l . _ _  q~=e;-+- /~w~, 
2 (3) 

(+ ) qi = eF -1- 1"}- ~'i - -  "cs , (4 )  
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